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Abstract 24 

A novel interpolation technique is applied to assessment of the quality of sea surface temperature 25 

(SST) observations and quantitative analysis of the subpixel variability within satellite footprints 26 

of different size.  Using retrieved satellite data as input, the new, global, multistage interpolation 27 

technique generates a trigonometric polynomial, providing a representation of the underlying 28 

physical SST field in functional form.  The resulting interpolating function can be efficiently and 29 

accurately evaluated anywhere within the domain over which it was derived and its moments 30 

calculated to estimate the mean and variance of the field over desired sub-regions.  Application 31 

of the technique is demonstrated for SST retrievals from the Moderate Resolution Imaging 32 

Spectroradiometer (MODIS), Spinning Enhanced Visible and Infrared Imager (SEVIRI), and 33 

Advanced Microwave Scanning Radiometer - Earth Observing System (AMSR-E) sensors.  34 

Comparison of the functional form with the data from which it was derived demonstrates how 35 

the technique can potentially help to identify small observational artifacts such as MODIS scan 36 

striping and residual cloud contamination.  Integrals of the interpolating functions over 37 

successively larger spatial scales successfully emulate the retrieved SST at the different effective 38 

spatial resolutions and the second moments are consistent with the direct sample variances, and 39 

hence representative of the spatial SST variability of the available finer-resolution observations 40 

over the coarser scales.  Using the approach, the variability of 1-km-resolution SST observations 41 

on open ocean grids of both 5- and 25-km resolution is found to be ~0.07 K.  In regions of 42 

sharper gradients such as associated with strong localized diurnal warming, the variability within 43 

25-km-resolution grids increases to as much as 0.4 K for sampling at 1-km resolution.  The 44 

variability of 1-km observations on a 25-km-resolution grid is about 2.4 times greater than that 45 

on a 5-km-resolution grid.  Broader application of the technique globally could help better 46 
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quantify regional variations in the spatial variability, which would subsequently improve 47 

uncertainty estimates for existing satellite-based SST products. 48 

 49 

 50 

Keywords:  SST subpixel variability; spatial variability; interpolation techniques 51 
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1. Introduction 53 

Interpolation methodologies are widely employed in the analysis and application of sea 54 

surface temperature (SST) products and imagery.  The most common usage is to fill gaps in the 55 

spatial coverage of the available products.  The capabilities of certain new approaches, however, 56 

enable promising additional unique and valuable applications.  In this paper, we show that a 57 

novel High Resolution Multistage Spectral Interpolation technique (HRMSI) can be applied to 58 

assessment of the quality of the underlying SST observations and analysis of the subpixel 59 

variability within satellite footprints of different size.  60 

Multiple techniques have been developed and utilized to fill gaps in satellite SST 61 

imagery, particularly for providing spatially complete, daily SST analyses (level 4 products, e.g. 62 

Martin et al., 2012).  Gaps in the spatial coverage of the retrieved satellite products result from 63 

many interfering factors such as clouds, precipitation, and aerosols.  Atmospheric constituents 64 

can confound the radiative signal from the earth’s surface, either degrading the accuracy of the 65 

physical retrievals or obscuring them completely.  The source and size of the gaps is specific to 66 

the retrieved variable and the portion of the electromagnetic spectrum being utilized.  For 67 

infrared retrievals of SST, clouds are the primary challenge, completely attenuating the infrared 68 

radiation emitted by the surface.  Within the microwave portion of the spectrum, the radiation 69 

can pass through non-precipitating clouds, but regions of precipitation still obscure the surface.  70 

Gaps also clearly result from limited sensor swaths, particularly in the equatorial regions for 71 

polar-orbiting satellites. 72 

Interpolation methods utilized in the generation of spatially complete SST products have 73 

been based largely on variations of the so-called optimal interpolation technique (e.g. Reynolds 74 

and Smith, 1994; Reynolds et al. 2007).  The review by Martin et al. (2012) provides a good 75 
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overview of many current SST analyses and the different approaches used in their generation.  76 

An additional approach for the reconstruction of missing data using empirical orthogonal 77 

function (EOF) decomposition applied to several oceanographic variables was described by 78 

Alvera-Azcárate et al. (2007) and a more recent technique for multiscale interpolation involving 79 

the use of wavelets has been applied to SST fields by Chin et al. (2017).  While largely 80 

consistent and extensively utilized, the quality of the analyzed products remains variable, 81 

particularly for regions of high spatial variability such as current systems, temperature fronts, 82 

and coastal and polar oceans (Reynolds and Chelton, 2010; Martin et al., 2012; Dash et al., 2012; 83 

and Castro et al., 2016), and further improvement in the quality of the products is desirable.  84 

Many other interpolation/regression techniques address practical problems associated 85 

with fitting scattered and noisy data with potentially large gaps.  One comparison of several 86 

different techniques applied to the gridding of multiple climate variables was presented by 87 

Hofstra et al. (2008).  The techniques differ in complexity and their utilization of the available 88 

frequency content of the data, which, in turn, is determined by the sampling density.   89 

Of particular interest here is the ability of an interpolation technique to provide an 90 

explicit functional representation of the data as opposed to discrete interpolated values at 91 

selected points of interest.  Such a functional form enables not only the evaluation of the 92 

interpolant at any arbitrary point within the domain of interest, but also the computation of a 93 

variety of quantities such as derivatives and integrals in analytic form.  While fully applicable to 94 

the traditional problem of gap filling in satellite imagery and construction of level 4 SST 95 

products, the functional form and the above-mentioned properties offer the potential to address 96 

other significant problems impacting the assessment of SST retrieval quality and better 97 

quantification of the full uncertainty budget for the SST products. 98 



6 

 

One such data quality issue is identification of instrumental or processing “artifacts” 99 

within the retrieved satellite data related to the way in which the sensors operate or the product is 100 

constructed.  While highly useful, satellite products are known to have important issues that can 101 

be extremely difficult to identify.  Scan striping is a particularly important example.  Sensors 102 

employing arrays of detectors like the Moderate Resolution Imaging Spectroradiometer 103 

(MODIS, Esaias et al., 1998) and the Visible Infrared Imaging Radiometer Suite (VIIRS, 104 

Murphy et al., 2006) are subject to issues with consistency in the calibration of the individual 105 

array detectors that can lead to the appearance of “stripes” or distortions in the derived products 106 

along instrument scans (Bouali and Ignatov, 2014).  Accurate identification and removal of these 107 

artifacts is complicated, and despite significant efforts by the data providers, current products in 108 

use can still exhibit some features of the artifacts. 109 

Another prominent problem is accurate determination of the spatial SST variability 110 

within the footprints of different resolution products and its impact on validation and merging of 111 

the retrievals.  Validation of satellite SST products relies primarily in situ measurements from 112 

drifting and moored buoys as well as radiometric measurements collected from research vessels 113 

and ships-of-opportunity.  These in situ sensors provide “point” measurements, which are then 114 

compared with larger areal averages from the satellite-borne radiometers.  This mismatch in 115 

spatial resolution directly affects the perceived accuracy of the satellite retrievals when validated 116 

in this manner.  The contribution of subpixel variability to the overall uncertainty budget of 117 

satellite SST retrievals has long been acknowledged (e.g., Minnett, 1991; Cornillon et al., 2010; 118 

Castro et al., 2017), but has yet to be fully quantified due to measurement limitations.  Accurate 119 

estimation of the spatial variability is dependent on complete, high-resolution sampling of the 120 

region of interest.  Satellite data, however, is often incomplete due to the gaps described above 121 
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and is limited by the sensor resolution.  Techniques such as variogram analysis (Castro et al., 122 

2010; Kent et al., 1999, Cressie 1993) enable estimates of variability on larger scales to be 123 

downscaled but the results are still highly dependent on the quality and density of the available 124 

observations.  The availability of an accurate fit to the data in functional form would provide a 125 

new way of estimating the fundamental SST variability since the function could also be 126 

integrated over arbitrary satellite footprints.  Moreover, since the variance, ��, of the SST 127 

distribution within a satellite’s footprint is a measure of the subpixel variability, the second 128 

moment of the interpolating function could be explicitly evaluated to yield the predicted value of 129 

�� at different spatial scales. 130 

In this paper, we address these problems through application of a novel global 131 

interpolation/regression methodology employing trigonometric polynomials (i.e. sinusoidal 132 

functions, hence the name trigonometric interpolation) that yields an explicit functional 133 

representation of the retrieved satellite data.  While the utility of intelligently filling coverage 134 

gaps with a physically realistic and continuous functional form is clear, this paper does not focus 135 

on this aspect or a comparison of this methodology with other techniques.  Rather, the primary 136 

emphasis here is on retrieval quality assessment and spatial variability of satellite SSTs.  137 

Following a brief description of the technique (Section 2) and the satellite data sets employed 138 

(Section 3), the basic capabilities and limitations of the technique are shown in Section 4.  139 

Broader application of the technique is illustrated in Section 5 along with a demonstration of 140 

how it can help identify problems associated with scan striping, instrument artifacts, and residual 141 

cloud contamination, and be employed as a tool for objective quality data assessment and 142 

flagging.  In Section 6, the moments of the interpolants for the different satellite SST sensors and 143 
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grid resolutions are evaluated and employed to explicitly quantify the spatial variability across 144 

broad regions and different spatial scales.   145 

 146 

2. New Trigonometric Interpolation Methodology 147 

The new global interpolation methodology applied in this paper employs trigonometric 148 

polynomials obtained using a multistage approach.  It is well understood that global 149 

interpolation/regression approaches are able to capture a significantly greater frequency range 150 

(and thus achieve higher resolution) than local techniques.  For a simple example, assuming 151 

periodicity and uniform sampling, trigonometric polynomial interpolation requires only two 152 

points per wavelength, whereas any standard polynomial-based or local interpolation techniques 153 

would require a significant oversampling factor to attain the same spatial resolution.  The 154 

problem with attempting a direct global interpolation on scattered data, however, is that 155 

variations in data density will force a lower global resolution, losing the advantage over local 156 

interpolation.  By introducing a multistage approach, we can accommodate regions of very 157 

different data density without resorting to the oversampling factor present in purely local 158 

interpolation techniques.  Starting from a coarse scale, we gradually increase the interpolant 159 

resolution in stages as we partially fill the gaps in the data.  The resulting image has adequate 160 

resolution in the gaps and the best possible high resolution in the regions with sufficient data 161 

density.  In so doing, high frequencies present in the input data associated with noise or other 162 

nonphysical effects can also be removed.  The method shares many similarities with the 163 

approach of Chin et al. (2017) but the main difference is that our technique is global rather than 164 

local in nature.  This section provides a brief mathematical introduction to the technique.  While 165 
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its application to SST fields is the subject of this paper, the technique can be applied to scattered 166 

measurements of physical fields of any type. 167 

A standard trigonometric interpolation assumes a functional form of the target image in 168 

terms of a real-valued trigonometric polynomial (that is, a finite (truncated) Fourier series), 169 

 ���, �� = ∑ ���
������������

|�|��,||�� , (1) 170 

for some coefficients ��, positive integers K and L, and positive (scaling) constants a and b. 171 

Note that we can also write (1) as 172 

 ���, �� = ∑ ��cos�2� �� + 2�"#�� + #� sin�2� �� + 2�"#��&����,&��� ,  173 

using real-valued coefficients �� and #�.  To simplify the description, we assume that ' = ( =174 

()�*� and say that ()�*�  is the degree of the trigonometric polynomial ���, ��.  Thus, ()�*�  175 

determines the highest resolution that can be achieved by this trigonometric polynomial 176 

representation.  If the input data were available on a (sufficiently dense) uniform grid, then the 177 

coefficients ��  could be easily estimated using the Fast Fourier Transform (FFT).  The satellite 178 

retrieved values ,-*.*, however, are available at irregular (scattered) points ,��* , �*�.* 179 

corresponding to coordinates of longitude, xn, and latitude, yn.  For this reason, to determine the 180 

coefficients ckl, we have to solve a least squares problem of the form  181 

∑ ���
������/������/

|�,|��01/23 
= -*.  Unfortunately, for a typical irregular grid, this formulation 182 

leads to an ill conditioned problem.  As a result, we would be forced to use a lower order 183 

trigonometric polynomial (i.e., to accept a low degree ()�*� ).  Our multistage approach to build 184 

the function I avoids this problem as follows. 185 

Our first step is to approximate the data using a low degree (&, i.e., we solve the 186 

weighted linear squares problem (with weights based on the local grid density) 187 

 ∑ ��
& �������/������/ =|�,|��5

-*, (2) 188 



10 

 

to find coefficients ��
&  for a small (&.  With these coefficients, we build the trigonometric 189 

polynomial 190 

 �&��, �� = ∑ ��
& �������������

|�,|��5
.    191 

This step, by itself, can also be interpreted as denoising the data since high frequency noise is 192 

suppressed in the representation.  Once �& is estimated, we use it to partially fill existing gaps in 193 

the data, which allows us to generate an augmented data set consisting of the initial set and the 194 

newly filled locations and their corresponding estimated temperatures.  At the next stage, we use 195 

the newly built, larger input data set to solve a system of the form (2), but where we can now 196 

increase the value of the degree of the trigonometric polynomial from (& to (a larger) (6without 197 

causing ill-conditioning.  The improved condition number (a factor controlling the sensitivity of 198 

the solution to small variations in the input data) for the larger system is due to the information 199 

added/gained through data augmentation.  Solving this augmented system, we find coefficients 200 

��
6 , which we use to build a new estimate �6.  This �6 is used to further reduce the gaps in the 201 

data and build a new system of the form (2), now with (� > (6.  We continue in this manner 202 

until we reach the final degree, ()�*� , yielding our final interpolant ���, ��.  Although this final 203 

degree should never exceed the degree implied by the region of highest density of measurements, 204 

it is also chosen to avoid overfitting by accounting for the level of measurement noise.  205 

As a step in solving the least squares problem, we evaluate trigonometric sums on 206 

unequally spaced grids.  For this purpose, we use the Unequally-Spaced Fast Fourier Transform 207 

(USFFT) (Dutt and Rokhlin, 1993; Beylkin, 1995) to assure both speed and accuracy. 208 

In order to efficiently and accurately evaluate the resulting interpolating function (the 209 

trigonometric polynomial in (1)), on any uniform or non-uniform grid, we once again use the 210 

USFFT.  The USFFT has the same complexity as the FFT and its actual cost is only a small 211 
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factor greater than that of FFT.  Note that for strictly uniform grids, the FFT may be more 212 

efficient, but for cases where the input requires significant padding, the USFFT is also a better 213 

choice.  Unlike other more common interpolation techniques, our method can be understood as a 214 

regression technique since the values of the interpolating function at the original sample 215 

locations may not coincide with the values of the input data.  In other words, evaluation of the 216 

interpolant ���, �� at the original observation points yields predicted values, not the original 217 

retrievals.  In this manner, analysis of the residuals (interpolation error) can help identify 218 

potential measurement errors and processing artifacts in the satellite retrievals. 219 

Furthermore, the interpolating function can be accurately integrated over any domain.  In 220 

particular, it permits the explicit computation of the statistical moments of the SST distribution.  221 

Of relevance for the application considered in this paper is the evaluation of the second moment 222 

(variance) as it yields a measure of the SST variability at selected points and spatial scales.  223 

If several interpolating functions are available for overlapping regions, it is easy to 224 

combine them in a consistent way since they can be evaluated on a sufficiently dense common 225 

grid.  In fact, any other convenient functional representation could be used for the result of such 226 

combination.  Thus, global SST maps can be obtained for all ocean basins and then combined 227 

with a minimal additional computational cost.  One of the remaining problems is to estimate the 228 

temperature near continental boundaries.  With our technique small islands can be treated as gaps 229 

and, after filling the gaps, the resulting interpolation can be restricted to open ocean areas.  In the 230 

case of a large land mass, additional techniques need to be developed to take into account 231 

relevant coastal features and irregular boundaries. 232 

In summary, the new interpolation methodology does not rely on standard local 233 

interpolation techniques or local statistical analysis, but rather obtains a global trigonometric 234 
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interpolant, within a Fourier Analysis framework, through gradual interpolation of the target 235 

region (a multistage approach), making it more robust to overfitting.  The theoretical basis for 236 

this methodology was recently developed by The Numericus Group, LLC, employing state-of-237 

the-art mathematical algorithms.  The use of the code should be coordinated by contacting The 238 

Numericus Group at info@thenumericusgroup.com. 239 

 240 

3. Satellite SST Data Sets 241 

The capabilities of the technique are illustrated through application to retrievals of SST 242 

from several current, commonly employed satellite sensors that span the range of available 243 

spectral type and spatial resolution.  The products include infrared (IR) retrievals from the polar-244 

orbiting MODIS from the NASA Aqua satellite and the geosynchronous Spinning Enhanced 245 

Visible and Infrared Imager (SEVIRI) on the Meteosat Second Generation (MSG- 2) satellite, 246 

and microwave (MW) retrievals from the Advanced Microwave Scanning Radiometer - Earth 247 

Observing System (AMSR-E) flown aboard the Aqua satellite.  The testing described in this 248 

paper uses data from 8 February 2009 over the South Atlantic Ocean between 4N – 40S and 249 

34W – 8E.  Scenes from this day, as shown in Figure 1, were chosen because of the unusually 250 

high thermal IR coverage (few clouds obscuring MODIS and SEVIRI) and the presence of 251 

interesting large-scale thermal features such as a strong diurnal warming filament, clearly visible 252 

from all three sensors.  An initial demonstration of the capabilities and limitations of the new 253 

technique additionally employs a composite of several days of SEVIRI data surrounding 8 254 

February. 255 

The MODIS retrievals (Figure 1a) are at 1-km resolution as obtained from the level 2 256 

(original satellite scan line/spot geometry) product processed by the NASA Ocean Biology 257 
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Processing Group (OBPG) and downloaded from the NASA Ocean Biology Distributed Active 258 

Archive Center (OB.DAAC, https://oceancolor.gsfc.nasa.gov/).  The study area was bisected by 259 

two ascending MODIS ground swaths, each composed of four 5-minute granules, over the period 260 

from 13:45 UTC in the bottom-right corner to 15:40 UTC in the upper-left corner.  Initially, data 261 

with quality indices, QI, 0–1, i.e., cloud-free according to the OBPG quality indexing 262 

conventions for their MODIS SST product (0: Good, 1: Questionable/suspect, 2: potentially 263 

cloud/sunglint contaminated, and 3: bad/cloud contaminated/failure), were considered as an 264 

effort to minimize the size of the gaps in MODIS coverage and test the ability of the interpolant 265 

to recognize pixels with residual cloud contamination and potential inconsistencies in the quality 266 

indexing of the retrievals.  It is important to emphasize that there is no uniform approach for 267 

satellite-derived SST quality flagging at present.  For IR SST sensors, however, the quality 268 

indexing is generally tied to proximity to cloud. 269 

The 5-km (0.05°) resolution SEVIRI SST product (Figure 1b) is produced at the Meteo-270 

France/Centre de Météorologie Spatiale (CMS, Lannion, France) within the framework of the 271 

European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT) Ocean 272 

and Sea Ice Satellite Application Facility (OSI-SAF) and was obtained directly from IFREMER 273 

(The French Research Institute for Exploitation of the Sea).  The product is a gridded (level 3 274 

collated), hourly product obtained by averaging data obtained at full resolution every 15 minutes 275 

(EUMETSAT, 2011).  From its geosynchronous orbit centered over 0° longitude, SEVIRI 276 

provides continuous spatial sampling over a grid from 60S – 60N and 60W – 60E.  The selected 277 

image in Figure 1 corresponds to 1500 UTC.  Data corresponding to quality flags 2-5 were 278 

included.  Additional quality indices beyond the “best” pixels (OSI-SAF QI convention: 0: no 279 

data, 1: bad, 2: very low quality, 3: low quality, 4: acceptable, 5: best) were again included to 280 
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increase coverage and to test the ability of the interpolating function to evaluate the data quality 281 

assessment performed by the data producer. 282 

The AMSR-E microwave SST data (Figure 1c) were obtained in level 2 format from 283 

Remote Sensing Systems (RSS, http://www.remss.com/, Wentz and Meissner, 2004).  The 284 

retrievals have a native resolution of approximately 38 km, but there is a high degree of 285 

oversampling.  Initial analysis of the data considered quality indices 2–4 (RSS QI convention: 1: 286 

bad, 2: suspect, 3: should-be-good, 4: good) to evaluate the need for additional screening as 287 

described below.  Note that AMSR-E retrievals are not affected by non-precipitating clouds and, 288 

thus, the quality indexing is not based on proximity to cloud, but rather on proximity to 289 

precipitation, ice, or land, and other factors affecting the quality of the MW retrieval such as sun 290 

glint, high winds, and electromagnetic interference.  Since the MODIS and AMSR-E sensors fly 291 

on the same satellite, their spatial and temporal coverage is nearly coincident (see Figure 1a and 292 

c). 293 
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 294 

Figure 1.  Illustration of (a-c) the input data to the interpolating function, (d-f) the resulting 295 

interpolant evaluated everywhere in the domain, and (g-f) the corresponding misfit for (top) 296 

MODIS, (middle) SEVIRI, and (bottom) AMSR-E.  The input data shown has outliers already 297 

removed as described in Section 5.  Panels a-f all share a common color bar shown at the bottom 298 

of the figure.  Panels g-i have distinct color bars shown just to their right. 299 
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4. Demonstration of the Interpolation Methodology 300 

An initial test demonstrates the new interpolation methodology’s ability to both 301 

reproduce existing data and fill in data gaps.  For this experiment, a spatially complete gridded 302 

data (no gaps) was required along with some realistic cloud mask.  The basis for the data grid 303 

was a maximum value composite (MVC) generated from all hourly SEVIRI SST scenes over the 304 

study area over four consecutive days starting on 8 February 2009.  To fill in a small number 305 

(less than 5%) of remaining gaps in the MVC, SEVIRI retrievals from the days prior to the 306 

starting day were inspected for additional observations at the empty grid cells.  The first 307 

available observation, going backward in time, was used to fill the respective gap.  The resulting 308 

SST scene is shown in Figure 2a. 309 

To test the interpolation methodology, SST values corresponding to representative gaps 310 

due to cloud cover were removed prior to generating the interpolating functions.  The source of 311 

this cloud mask was taken as the screened clouds from the 1500 UTC SEVIRI hourly product 312 

from 8 February 2009 as shown by the grey areas in Figure 2b.  An interpolating function was 313 

generated using the remaining observations (clear pixels in Figure 2b), and then evaluated at 314 

every 0.05° grid point corresponding to the original, spatially complete, SEVIRI composite (all 315 

obs in Figure 2a).  The resulting image is shown in Figure 2c.  It is important to emphasize that 316 

at the locations where input data were available, the values shown in 2c are from the 317 

interpolating function and not the original retrievals.  Qualitatively, the interpolating function is 318 

observed to do a good job in reproducing the original SST data in all but the regions with the 319 

largest assumed cloud cover. 320 
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 321 

Figure 2.  Initial demonstration of the interpolation technique applied to a SST composite 322 

derived from SEVIRI.  Panel (a) shows the original composite, (b) shows the composite with the 323 

cloud mask applied, and (c) shows the interpolating function evaluated everywhere on the 324 

composite grid.  The resulting misfit is shown in panels d-e for both the clear values and all 325 

values respectively.  The corresponding “blended” misfit in panel e was derived in an additional 326 

experiment where additional inputs to the interpolation in cloud screened regions were supplied 327 

based on simulated lower resolution data.  See text for details. 328 
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 329 

To quantify the accuracy of the interpolating function, the difference between the 330 

functional value of the interpolant and the original SEVIRI SST composite was evaluated at each 331 

grid point.  Termed the “misfit,” these differences are plotted for the clear observations from 332 

which the function was derived (Figure 2d) and for all the points including the assumed cloud 333 

gaps in the input data (Figure 2e).  The misfit shows a speckle-like noise pattern with very small 334 

amplitudes (within +/- 0.2 K) where the input data were available, demonstrating that the clear 335 

observations are well reproduced by the interpolating function.  As expected, however, the misfit 336 

gets larger as the size of the gaps increases and, additionally, the speckle noise adds coherently 337 

and self-organizes in large constructive and destructive patterns (the saturated red and blue 338 

patches in Figure 2e corresponding to the largest gaps within the cloud mask).  This shows that 339 

the ability of the interpolating function to replicate the data within the gaps is constrained by the 340 

size of the gap. 341 

The misfit values from Figure 2e were then binned as a function of the Euclidean 342 

distance to the nearest available observation to show how closely the interpolator replicates input 343 

observations and to provide an indication as to how large of a gap can be effectively filled with 344 

this technique.  The results for gaps of increasing size up to 25 pixels (125 km) are shown as the 345 

black trace in Figure 3.  The misfit has a mean value of 0.10 K for the points at 0-distance (i.e., 346 

where observations were available) and then increases monotonically as the gap size (distance to 347 

nearest observation) increases.  If an acceptable accuracy for the interpolation error were 348 

assumed to be 0.2 K, these results demonstrate that the technique is able to effectively fill gaps 349 

of up to about 10 pixels (50 km) in size using the information contained in the available data.  350 
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 351 

Figure 3.  Mean misfit evaluated as a function of Euclidean distance to the nearest available 352 

observation for the identified interpolation techniques.  The black trace reflects the results 353 

obtained from our interpolating function derived from inputs in clear areas only.  The red trace 354 

was obtained from an alternative interpolating function obtained with additional simulated lower 355 

resolution SST input in the cloudy regions.  The green trace applies to an independent simple 356 

distance-weighted interpolation approach.  Solutions for this weighted technique exist only up to 357 

a distance of about 30 pixels. 358 

 359 

While the focus of this paper is not on the skill of the interpolation at filling gaps, an 360 

additional experiment was performed to demonstrate how the method could be employed to fill 361 

larger coverage gaps as is done in existing SST analyses.  In the regions where clouds were 362 

artificially introduced (Figure 2b), the original 5-km resolution SEVIRI composite data was 363 

replaced with a 25-km average value (i.e., 5x5-box averages of neighboring grid cells centered at 364 

each cloudy pixel) to simulate the availability of lower resolution AMSR SST retrievals under 365 

clouds.  A new “blended” interpolating function (not shown) was generated based on this 366 
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combined data.  The method was only allowed to utilize the additional lower resolution input 367 

once the distance from the original higher resolution observations reached a user-specified 368 

distance of 10 pixels.  The misfit resulting from evaluating the blended interpolator at the initial 369 

5-km SEVIRI composite SSTs is displayed in Figure 2f and the corresponding binning as a 370 

function of the Euclidean distance to the nearest available observation is shown as the red trace 371 

in Figure 3.  The binned misfit reaches its maximum value at a distance-from-observation of 372 

about 10 pixels corresponding to the transition to inclusion of additional data.  Beyond this 373 

threshold, the blended interpolator can be evaluated to fill larger and larger gaps with remarkable 374 

accuracy and precision, as the misfit plateaus at 0.1 K for larger distances.  For this idealized 375 

case, where 25-km resolution data are assumed to always be available to guide the interpolation 376 

when there is no high resolution data at hand and the coarser resolution data reasonably reflects 377 

the SST patterns at finer resolution, the simple addition of the complementary coarser data 378 

significantly improves the accuracy of the interpolator’s spatial predictions at the unsampled 379 

locations.  It is for this very same reason that existing SST analyses blend data from multiple 380 

satellite sensors. 381 

Although we do not seek to directly compare the performance of different interpolation 382 

methods, an additional test places these results in the context of an independent, alternative 383 

method.  A simple, distance-weighted, sphere-of-influence based interpolation technique was 384 

also tested based on the available “cloud-free” observations in Figure 2b.  For each grid point, 385 

the technique searched for all available clear ocean observations within a radius of 100 km and 386 

then computed the weighted average of those data with the weights given by one over the square 387 

of the radius (inverse distance).  Observations directly at the grid point (0 distance) were 388 

assigned a weight of one.  If there are no observations within the 100-km radius, the technique 389 
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fails to produce an estimate, and thus it cannot be used to produce complete fields.  The misfit 390 

between the weighted interpolation estimates and the original composite SEVIRI values was 391 

computed and further binned with distance from the observations and shown by the green trace 392 

in Figure 3.  Within smaller gaps, our high-resolution multistage interpolation technique 393 

outperforms the distance-weighted interpolation, but as the gap increases beyond about 12 pixels, 394 

the localized weighted average does better than the interpolator derived from the cloud-free 395 

observations.  Although counterintuitive at first glance, a global interpolation method such as 396 

ours uses global information content to fill in the small scale variability that in small gaps is 397 

smoothed by the average, whereas in large gaps, the new method is conservative opting for 398 

background values that are even smoother than a localized average.  More detailed comparisons 399 

of different techniques and application to filling gaps in multi-sensor data are deferred to a 400 

separate paper. 401 

 402 

5. Application of the Interpolant to Scene Quality Assessment 403 

Beyond the basic illustration of the capabilities of the technique shown in the previous 404 

section, the broader utility of the interpolation methodology can be demonstrated through 405 

application to the individual sensor SST scenes described in Section 3.  One such unique 406 

application is helping to assess the quality of the data used to build the interpolating function, 407 

including the identification of any potential artifacts in the input data.   408 

Interpolating functions were generated for each of the sensor products in a two-step 409 

approach:  first using inputs with minimal quality control and a second step using refined inputs 410 

obtained after removing outliers identified based on the magnitude of the interpolation errors 411 

from the first step.  In the preliminary screening, data from all the quality levels listed in Section 412 
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3 were used as inputs.  This included data of more questionable quality that are typically 413 

excluded in other applications, such as the construction of SST analyses (level 4 products).  The 414 

reason behind this approach is twofold:  1) to assess the ability of the interpolating function to 415 

help with additional screening of poor quality data, and, 2) to retain as much data as possible to 416 

build an interpolant able to accurately fill in gaps in coverage.  So-called “questionable” data in 417 

IR retrievals can be extremely challenging to screen using the conventional cloud masking 418 

methodologies employed by most data producers.  Traditional satellite cloud screening methods 419 

rely on a series of thresholds to identify large retrieval errors.  These techniques are not perfect, 420 

however, as in many cases, such as with low stratus and polar maritime cloud, the clouds exhibit 421 

very little contrast from the underlying sea surface.  Thus, flagged observations often include a 422 

mix of both contaminated and uncontaminated retrievals and valid data points may be discarded 423 

when an entire quality level is excluded from an analysis. 424 

The preliminary screening was successful in identifying contaminated observations 425 

within the questionable levels while retaining other retrievals highly consistent with their 426 

surrounding values.  Interpolation errors were computed as the difference between the actual 427 

satellite-retrieved SSTs used to derive the functions and the values of the interpolating function 428 

at the locations (nodes) of the SST input.  Note that unlike exact interpolators, the interpolation 429 

error at the nodes is non-zero with the proposed method, accounting for uncertainty in the 430 

observations.  Distributions for the interpolation errors were obtained from normalized 431 

histograms.  Differences exceeding a specified threshold suggested unreasonable satellite 432 

retrievals inconsistent with a smoothly varying SST field.  Residual outliers identified in this 433 

fashion were then rejected prior to generating the interpolating function.  Sharp SST frontal 434 

features or narrow patches of diurnal warming pose challenges where valid data could also be 435 
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rejected and represent a key tradeoff in selecting the rejection threshold.  A high rejection 436 

threshold, nominally based on the 99% quantile of the distribution of the differences, was 437 

utilized in an effort to reject residual cloud contamination only.   438 

The results reveal how the retrievals rejected in this manner compare to the quality 439 

indices assigned by the data producers.  The percentage of “best” and “suspect” quality 440 

observations rejected is shown in Table 1 for MODIS and AMSR.  No SEVIRI input 441 

observations were rejected during the screening process.  For MODIS, the observations were 442 

screened using the SEVIRI-derived interpolating function rather than using direct comparison 443 

against values of the MODIS interpolating function, as the SEVIRI interpolator was more 444 

effective at identifying outliers given the higher levels of uncertainty in MODIS.  For both 445 

MODIS and AMSR, a larger percentage of the observations indexed as “suspect” by the data 446 

producer were rejected, but some “best” quality observations were also removed.   447 

 448 

Table 1.  Percentage of original observations of specified quality index rejected in first stage 449 

screening. 450 

Sensor Best Quality Questionable Quality 

MODIS 0.01% (QI 0) 1.05% (QI 1) 

AMSR-E 1.0% (QI 4) 4.5% (QI 2) 

 451 

In the second step, the input data retained after the exclusion of outliers in the screening 452 

step were used to compute the final, refined interpolating function for each sensor.  The quality-453 

controlled SST inputs are shown in Figure 1 a-c.  The final degree, ()�*� , used for the 454 

interpolating trigonometric polynomials was 1024 for MODIS, 512 for SEVIRI, and 256 for 455 
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AMSR-E.  The degree was algorithmically derived as part of the multistage approach to build the 456 

interpolating function. The choice of the degree is the result of, at each stage, checking the size 457 

of the intermediate residuals and monitoring the condition number of the system to solve for the 458 

coefficients of the intermediate interpolating function.  The polynomial degree reflects the ability 459 

of the interpolating functions to reproduce the observed variability without fitting residual noise 460 

in the data.  The degree also reflects some correlation with the sensor product resolution.  For 461 

efficiency in the current technique, degrees based on powers of 2 were used, but this will be 462 

generalized to any degree in the future.  Because of the large gap between the AMSR-E swaths, 463 

separate interpolating functions were generated independently for the individual swaths.  The 464 

manual separation of input data for the two swaths was performed for AMSR-E only.   465 

To illustrate the performance of the code, we recorded the execution time needed to 466 

generate the interpolating function with the highest degree on a workstation with an Intel i7-467 

7700K CPU operating at 4.2 GHz.  The MODIS input (Figure 1a) contains 5,172,397 pixels and 468 

the interpolant constructed has degree 1024.  Interpolant construction required 957 seconds 469 

(median of 3 timings, excluding I/O), that is, about 16 minutes.  Next, we evaluated the 470 

interpolant on the whole domain displayed in Figure 1d (42 x 44 degrees) which contains 471 

19,350,000 pixels.  This evaluation required 37.4 seconds (median of 3 timings, excluding I/O). 472 

Our current implementation has not been heavily optimized, and we anticipate that significant 473 

acceleration is possible, especially in the construction of the interpolant.  To expand the 474 

implementation of the technique to global applications would require partitioning the ocean 475 

basins into similar sub-domains. 476 

The resulting values of the interpolating functions evaluated on full grids, corresponding 477 

to the resolution of the input data from each sensor, are shown in Figure 1 d-f.  For AMSR-E, 478 
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due to the high degree of oversampling, a regular 0.25° resolution grid was used, consistent with 479 

the corresponding level 3 products provided by Remote Sensing Systems.  As before, at the 480 

nodes where original data were available, the values shown are from the interpolating function 481 

and not the original retrievals.  Qualitatively, at the large image scale, the interpolating function 482 

for each sensor captures the spatial SST variability extremely well, further illustrating the strong 483 

potential of the technique.  At nodes where input data were available, the interpolating function 484 

accurately reproduces all major features, including the region of diurnal warming.  Within the 485 

original sampling gaps, the interpolated functional values generally appear physically realistic, 486 

while providing a continuous SST field.  Not surprisingly, as emphasized in the initial 487 

demonstration in Section 4, the ability of the interpolating functions, derived based on single 488 

sensor data as done in this demonstration, is more limited in regions of extensive data gaps such 489 

as between satellite swaths.  In these regions (e.g., Figure 1d), the functional values are notably 490 

smoother, as the methodology takes a conservative approach in poorly sampled regions so as not 491 

to introduce spurious fine resolution features.  At the edge of the image domains where there is 492 

no input data to bound the function, some larger errors can be observed, as the function is not 493 

designed to extrapolate outside the spatial domain for which it was built.   494 

The general skill of the interpolating functions in reproducing the underlying SST 495 

structure and variability for the MODIS and SEVIRI satellite products can also be assessed 496 

through comparisons with independent drifting buoy observations.  Buoys have long been a 497 

standard against which satellite SST retrievals have been judged.  For this evaluation, quality 498 

controlled drifting buoy data obtained through the NOAA iQUAM in-situ SST monitoring 499 

system (https://www.star.nesdis.noaa.gov/sod/sst/iquam/; Xu and Ignatov, 2014) were compared 500 

separately against the direct satellite retrievals and against values of the interpolating functions 501 
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for the scenes considered above both in regions where retrievals were available and in the gaps 502 

where no training data were available.  For the direct satellite retrievals, buoy observations were 503 

matched with satellite retrievals within one hour in time and either the closest grid cell (SEVIRI) 504 

or the nearest retrieval (MODIS) within less than 20 km. With the interpolating function, the 505 

satellite SST is matched with the buoy by directly evaluating the function at the exact node 506 

corresponding to the buoy location.  Since the MODIS image uses granules from 13:40 to 15:45 507 

UTC, buoys present in the domain from 1300 to 1600 were extracted for the MODIS matchups.  508 

In the case of the 1500 UTC SEVIRI, buoys within 1400 and 1600 UTC were considered. 509 

Statistics for the buoy comparisons are summarized in Table 2 and further support the 510 

skill of the derived interpolating functions.  One notable result is that the rms difference with 511 

respect to the buoys within clear ocean pixels is smaller when using the interpolating function 512 

estimate than for the retrievals themselves for both MODIS and SEVIRI.  The biases are also 513 

generally similar.  These findings reflect positively on both the overall accuracy of the 514 

interpolating function and its ability to be evaluated at precise point locations.  While the 515 

agreement between the buoy measurements and estimates derived from the interpolating function 516 

is somewhat degraded in cloudy regions for SEVIRI, the values are quite similar between the 517 

clear and cloudy regions for MODIS suggesting some value of the interpolated MODIS results 518 

within the cloud-covered gaps. 519 

 520 

  521 
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Table 2.  Statistics comparing the SST values retrieved directly or obtained from the 522 

interpolating function against collocated buoy SST measurements.  The bias is computed as 523 

retrieved value minus the buoy measurement. 524 

Sensor Satellite Retrievals Interpolator in Clear Interpolator in Clouds 

 Points 

Bias 

(K) 

STD 

(K) 

Points 

Bias 

(K) 

STD 

(K) 

Points 

Bias 

(K) 

STD 

(K) 

MODIS 64 -0.16 0.60 64 -0.11 0.53 40 -0.14 0.60 

SEVIRI 26 0.06 0.28 26 0.01 0.21 50 -0.07 0.66 

 525 

A more quantitative pointwise evaluation of the resulting interpolation error at nodes 526 

where the input data were available better illustrates the ability of the methodology to further 527 

assess the quality of the underlying data.  Residual differences (again termed the misfit) were 528 

computed between the functional value of the interpolant at the location of the available satellite 529 

SST retrievals and the actual retrieved SST values as in Section 4.  Corresponding misfits for 530 

MODIS, SEVIRI and AMSR are plotted in Figure 1 g-i, respectively.  The typically small values 531 

of the misfit again demonstrate how the function is able to accurately capture the observed SST 532 

variability throughout the scene.  Only for MODIS are residual differences comparable to, or 533 

larger than, the expected satellite retrieval accuracies (about 0.5 K).  Moreover, closer 534 

examination of patterns in the misfit reveals how powerful the technique can be in identifying 535 

potential remaining artifacts related to cloud contamination, instrumental effects, and sampling 536 

errors.   537 

Locations of the largest values of the misfit (i.e., the top 1 or 5%) are further highlighted 538 

in Figure 4 as the points plotted in black.  It is notable that the patterns suggested by the largest 539 
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misfit values are quite different for the different sensor types.  This suggests that the differences 540 

cannot be simply ascribed to properties of the functional fit, but rather may be associated with 541 

the underlying data.  Given that the exact cause of the misfit is not always known with certainty, 542 

the differences, however, must be carefully examined before concluding that they are indeed data 543 

artifacts.  Statistics comparing these largest misfit values with all other points are shown in Table 544 

3.  The increase in the mean misfit for the largest differences is clear, particularly for MODIS. 545 
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 546 

Figure 4.  Locations of the largest misfit values for (a) MODIS, (b) SEVIRI, and (c) AMSR-E.  547 

The locations exceeding the percentile indicated in the title of each panel are plotted in black 548 

while all other observation locations are plotted in gray. 549 

 550 
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Table 3.  Statistics characterizing the difference in misfit for those points above and below the 551 

percentiles selected for the greatest differences between the observed and estimated SSTs.   552 

Sensor 

< 99% > 99% 

Points Mean (K) STD (K) Points Mean (K) STD (K) 

MODIS 5,120,673 0.12 0.01 51,724 0.58 0.11 

SEVIRI 282,333 0.06 0.05 2852 0.28 0.04 

AMSR-E 

 < 95% > 95% 

L Swath 85,790 0.02 0.02 4515 0.19 0.13 

R Swath 95,639 0.02 0.01 5034 0.13 0.10 

 553 

The MODIS misfit maps (Figure 4a and 1g) show stripes consistent with individual scan 554 

lines from the sensor, particularly in the western swath.  Scan striping has long been a problem 555 

for MODIS SST retrievals resulting from the use of an array of independent detectors with 556 

imperfect relative calibrations and a multi-sided (cross-track) scan mirror (Gumley, 2002).  557 

Substantial effort has gone into reducing the impact of scan striping, and the results have 558 

improved to the point where striping cannot be visually detected in the input MODIS scene in 559 

Figure 1a.  Comparison of the smooth functional form and the retrieved data, however, suggests 560 

that striping is still present in the retrievals.  Identification of striping at this low magnitude is 561 

challenging, and few other existing techniques have exhibited the ability to show the striping as 562 

clearly as the interpolating function does here. 563 

The other most coherent regions of misfit for MODIS (Figure 2a) are found in regions 564 

just left of the scan center in the northern portion of the scene.  The cause for this misfit pattern 565 

is not fully understood, but the region in the eastern swath does show correlation with a discrete 566 
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portion of the scan geometry suggesting that the effect could again be instrumental in nature.  567 

Other isolated larger differences could have contributions both from sampling effects and 568 

limitations in the functional fit.  Instrumentally, the differences could indicate random noise or 569 

potential problems with residual cloud contamination or subpixel cloudiness in the 570 

corresponding SST retrievals.  With respect to the functional fit, very fine scale variability at the 571 

MODIS resolution might not be fully resolved given the tradeoff between distinguishing natural 572 

high frequencies from noise.   573 

The magnitude of the misfit can again be compared to the original quality flags assigned 574 

by the data producer.  Using MODIS as an example, the mean misfit expressed as a function of 575 

the quality index is presented in Table 4.  Results are shown both for the absolute value of the 576 

misfit and for the true mean where positive and negative values can partially cancel out.  As 577 

noted before, the mean misfit is very small in magnitude, reflecting the overall goodness of the 578 

functional fit.  A slight increase in magnitude of the misfit is observed for the “questionable” 579 

data quality that was retained following the initial step removing outliers, but the fact that the 580 

change is so small further justifies the inclusion of the additional data in the analysis.   581 

 582 

Table 4.  Mean magnitude of the misfit in the MODIS interpolating function expressed as a 583 

function of quality index. 584 

 Best Quality Questionable Quality 

Mean Misfit (K) 0.00 -0.01 

Mean Absolute Misfit (K) 0.12 0.16 

 585 
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The SEVIRI misfit (Figure 4b and 1h) exhibits a largely random pattern with the 586 

exception of a concentration of larger misfit values along the axes where diurnal warming is 587 

observed to be greatest.  For these areas near strong diurnal warming, the source of the difference 588 

is likely algorithmic rather than physical as the interpolating function may be overly smoothing 589 

across the sharp SST gradients.  The diurnal warming introduces stronger gradients than 590 

elsewhere within the scene and forcing the interpolating function to resolve these gradients 591 

would have resulted in the introduction of high-frequency noise.  This is another clear instance of 592 

the balance between resolving high-resolution features (i.e., preserving the interpolator from 593 

over-smoothing) while keeping high-frequency noise to a minimum.  Elsewhere, the large 594 

differences do not appear to suggest any correlation with potential residual cloud contamination 595 

in the retrievals with more suspect quality levels, suggesting that the majority of the cloud 596 

contaminated data have indeed been excluded by the data producer.  This again suggests that use 597 

of lower level quality data does not necessarily have a negative impact; in fact for this 598 

application, the inclusion of additional data might have been highly beneficial since other results 599 

(Castro et al., 2014) have suggested that extreme diurnal warming events tend to be flagged as 600 

poor quality data by the automated quality control processes implemented with operational data.  601 

The AMSR-E misfit values (Figure 1i) are very small overall (about 0.1 K), but do show 602 

some tendency for larger values (Figure 2c) to concentrate along the edges of screened 603 

precipitation regions (the main source of the gaps inside the swaths of the AMSR-E input), swath 604 

edges, and near the swath center.  The concentration of elevated misfit values forming “halos” 605 

around the pre-screened features suggest that additional unflagged retrievals in the vicinity of the 606 

features might still be modestly impacted by the contamination source.  While the functional fit 607 

could also potentially over-smooth across edges in data coverage, the fact that such similar halos 608 
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are not observed for the other sensors lends support for unflagged rainfall contaminated pixels.  609 

The interpolating function is also able to highlight known anomalies in the retrieved values at the 610 

outermost spots on the right side of the scan.  The increased misfit corresponds to known 611 

contamination caused by parts of the Aqua spacecraft entering the field of view of the first (right-612 

most) pixels of each scan.  These pixels are excluded in creation of the Remote Sensing Systems 613 

level 3 products but are included with the level 2 data (Wentz and Meissner 2004).  The misfit 614 

values just to the right of the scan center could possibly suggest very small calibration 615 

differences with scan spot, but these are much smaller than the expected retrieval accuracy.  616 

Interestingly, while there is some correlation between the larger errors and scan spot, there is no 617 

suggestion of correlation with scan line.  The larger pixels at the left edge of the scan are due to 618 

numerical issues with the interpolator at the boundaries of the interpolated swath areas, as it is 619 

not equipped to extrapolate outside areas for which it was built.  Recall that in the AMSR-E case, 620 

two separate interpolants were constructed due to the wide gap between swaths.  Careful 621 

examination of the AMSR-E image in Figure 1c reveals the presence of periodic conical scan 622 

patterns in the SSTs along the satellite tracks, especially on the left swath, which is mimicked in 623 

the interpolated data (see Figure 1f).  Trigonometric polynomial interpolants are particularly well 624 

suited for fitting periodic, smooth features.  The fact that these patterns have smooth curvature 625 

with an apparent periodicity spanning over long distances along the satellite ground track means 626 

that it can probably be characterized by a sinusoid function, which explains the failure of the 627 

trigonometric interpolator to identify it as an artifact in the AMSR-E data unlike with the linear 628 

striping in MODIS. 629 

 630 
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6. Application to Sub-Pixel SST Variability 631 

Another novel application of the interpolating function is to explore subpixel variability 632 

within satellite products of differing spatial resolution.  In geophysical phenomena, the 633 

measurement of a physical variable associated with a point, x, in a two-dimensional space 634 

represents an average value over some continuum area.  From a practical standpoint, however, 635 

we tend to associate a measurement with its point value, Z = z(x).  For instance, it is common to 636 

implicitly treat the satellite-retrieved SST for a pixel as a point value, particularly when 637 

validating it against in situ point observations, even though the measurement integrates the 638 

radiation coming from the entire area within the satellite footprint.  There is an estimation error 639 

stemming from this representation because there always is spatial variability in nature.  This is 640 

what in satellite remote sensing has been broadly termed the point-to-pixel discrepancy.  The 641 

unresolved spatial variability has an effect on the perceived uncertainty of satellite-derived 642 

products when the satellite retrieval is validated using observations with significantly finer 643 

resolution than the satellite.  Vinogradova and Ponte (2013) presented a good recent discussion 644 

of this impact on sea surface salinity observations from the Aquarius satellite. 645 

Accurately quantifying the true variability is very challenging in practice and the results 646 

are inevitably tied to the size of the region/footprint and the resolution and density of the 647 

available observations.  The concept behind an observationally-based estimation of spatial 648 

variability is to densely sample regions the size of the satellite’s footprint using instrumentation 649 

of sufficiently high spatial resolution to capture all the scales of variability within the footprint.  650 

The variance of the high-resolution observations then provides a measure of the spatial 651 

variability within the coarser pixel.  This challenge is currently met through advances in 652 

technology with small, high resolution instruments mounted on fast moving platforms, with the 653 
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capacity to obtain measurements that fully resolve the finer scales of variability.  While viable, 654 

these field campaigns are expensive and cannot be conducted globally.  Another option, 655 

employed by Vinogradova and Ponte (2013) in the study of salinity, is to utilize high-resolution 656 

model output fields in the place of direct observations to represent the variability within a given 657 

footprint. 658 

To estimate the subpixel variability within coarser resolution products, it is also possible 659 

to use measurements from higher resolution satellite observations.  The limiting factors of this 660 

approach are the spatial resolution of the available satellite sensors, and obtaining sampling with 661 

adequate density to accurately estimate the true variability of the field.  While the first problem is 662 

constrained by the available data, use of the interpolating function can potentially help with the 663 

latter.  Estimates of variability obtained exclusively from satellite retrievals are limited by gaps 664 

and the underlying noise of the data.  Collocation and direct aggregation of all observations 665 

within successively larger footprints is also computationally expensive.  In contrast, interpolating 666 

functions derived from the high-resolution observations are continuous (gap free) and can be up-667 

scaled or integrated easily over larger areas corresponding to the coarser resolution products.  668 

Thus, interpolating functions have the advantages of providing physically consistent values 669 

everywhere within the desired coarser footprints (aside from the largest gaps), ease of analysis, 670 

and smoothing out other sensor-specific noise that could affect direct averages and variability 671 

estimates.   672 

Since the interpolant ���, �� described in (1) is an explicit trigonometric polynomial of 673 

two real variables, we can efficiently compute its moments over any desired region by reducing 674 

the problem to an application of the FFT or the USFFT.  We are particularly interested in the 675 

second central moment of the function to estimate the variance of the field.  The aim is to 676 
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compare this estimated variance with the direct sample variance of the high-resolution pixels as 677 

they are aggregated over successively coarser resolution grids.  This estimated variance can, in 678 

turn, inform estimation of the subpixel variability and its contribution to an uncertainty budget of 679 

satellite SST retrievals. 680 

The differing resolutions of MODIS (1 km), SEVIRI (5 km), and AMSR-E (25 km for 681 

the level 3 grid) provide a means to investigate the subpixel SST variability on retrievals of 682 

scales from approximately 5–25 km.  The MODIS interpolating function can be used to estimate 683 

variability within the SEVIRI and AMSR pixels and the SEVIRI interpolating function can be 684 

used as an independent estimate of variability within the AMSR-E footprint. 685 

Prior to using the interpolating functions to infer the spatial variability, it is useful to 686 

further verify their ability to accurately estimate the mean SST field over the selected coarser 687 

resolution footprints (e.g., the ability of the MODIS interpolating function to estimate an 688 

observation over the coarser AMSR footprint).  If the interpolating function accurately represents 689 

the underlying physical field, the integral of the interpolant over the footprint should 690 

approximate the satellite-retrieved value for that footprint.  To test the functional approach, the 691 

integral of the interpolants over coarser resolution footprints was compared against direct 692 

arithmetic averages of all the available higher resolution observations within the same domain.  693 

There is a caveat, however, in that the comparison involves the mean of a continuous function 694 

over the integration domain and the average of a discrete sample with gaps in coverage.  Missing 695 

observations within the gaps are expected to contribute to differences with the interpolant 696 

integral, but the comparisons can also provide insight into how consistently the gaps are filled in 697 

by the interpolant.  Note that the integral could also be compared with the original coarser 698 

resolution observation on that footprint (say a 5-km integral of the MODIS interpolant with the 699 
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corresponding native 5-km SEVIRI retrieval), but that would introduce an intercomparison 700 

between sensors with different characteristics that we want to avoid.  Here, we wish to evaluate 701 

the ability of the interpolants to supplant the direct, higher resolution observations from which 702 

they were derived. 703 

Results are shown in Figure 5 for comparison of the MODIS integrated interpolating 704 

function and corresponding averaged MODIS observations on the SEVIRI and AMSR-E grids, 705 

and the SEVIRI function and observations on the AMSR-E grid.  The differences do not, in any 706 

way, reflect measurement errors between different sensor types.  To first order, the functional 707 

integrals agree very well with the averages of the data from which they were derived.  Mean 708 

differences are near zero (< 0.04 K) and coherent differences are relatively small in magnitude.  709 

Overall, the largest differences, not surprisingly, occur on the edge of large data gaps.  Increased 710 

differences do also occur in stronger gradient regions and near the diurnal warming feature (25S, 711 

25W) where SST variability is greatest and accurate averages are dependent on all possible 712 

measurements (which may not be available).  Those differences, however, are still generally 713 

within expected retrieval accuracy. 714 
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 715 

Figure 5.  Evaluation of whether the integral of the interpolating functions is a direct analog to 716 

the average of the underlying observations on the selected grids of differing resolution.  The top 717 

panels correspond to the evaluation of MODIS resolution sampling on the SEVIRI grid, the 718 

middle panels to MODIS resolution sampling on the AMSR-E grid, and the bottom panels to 719 

SEVIRI resolution sampling on the AMSR-E grid.  Panels a-c show the integrals of the 720 

interpolating functions over the grid cell, panels d-f show the average of the available 721 

observations within the grid cell, and panels g-i show the corresponding differences between the 722 

integrals and averages.  Common color bars are shown at the bottom of each column. 723 



39 

 

To better appreciate the fine scale differences, the corresponding results for a smaller 724 

region, centered on the large diurnal warming event, are shown in Figure 6.  Distributions of the 725 

difference values are also shown in Figure 7.  Visually, the integrals of the interpolating 726 

functions, again, appear very similar to the direct averages of the measurements and the 727 

magnitude of the differences are reasonably small (mean differences all again < 0.04 K).  For the 728 

MODIS difference on the SEVIRI grid (Figure 6g), the effect of scan striping is again visible but 729 

no other coherent patterns emerge.  For MODIS on the AMSR grid (Figure 6h) the differences 730 

are elevated near the large gradients associated with the region of diurnal warming and also near 731 

the edges of coverage gaps.  While the mean difference between the interpolant integral and 732 

direct MODIS average on the AMSR grid is very small (-0.04 K), there is a skewness of the 733 

difference distribution to negative values indicating that the value of the integral is typically 734 

smaller than the average.  This could potentially result from the presence of cloud “halos” or 735 

slight residual cloud contamination on the edge of screened regions causing the interpolating 736 

function to project slightly cooler SST values into the enclosed regions with missing 737 

observations.  The differences in the SEVIRI results evaluated on the AMSR grid (Figure 6i) are 738 

quite random except for some enhancement on the edge of data gaps.  The mean difference 739 

between the integral and the sample average is less than 0.01 K.  Overall, the results suggest that 740 

the interpolating functions can accurately capture the variability within the coarser sensor 741 

footprints and support further use of the functions to quantify this subpixel variability. 742 
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 743 

Figure 6.  As in Figure 5, but for a localized region including the peak diurnal warming. 744 



41 

 

 745 

Figure 7.  Distribution of the differences between the integrals of the interpolating functions and 746 

averages of available observations for the results from the localized region plotted in Figure 6.  747 

Results for the different sensor and grid combinations are plotted by color as shown in the 748 

legend. 749 

 750 

Based on this success, the ability of the second moment of the interpolating function to 751 

characterize the variability within the coarser resolution pixels was explored next.  The second 752 

moment of the interpolating functions (or variance functions) was computed and integrated over 753 

regions corresponding to the SEVIRI and AMSR-E footprints as for the first moment (the mean 754 

of the function) above.  These explicit variances were then compared with direct computations of 755 

the sample variance for the corresponding higher resolution MODIS and SEVIRI measurements 756 

within the same domains.  Graphical results are shown in Figure 8 for the MODIS retrievals and 757 

interpolating function evaluated on both the SEVIRI and AMSR-E grids, and corresponding 758 

SEVIRI products on the AMSR-E grid.  Distributions of the variance computed in both ways are 759 



42 

 

further plotted in Figure 9.  A more detailed spatial comparison for the zoomed-in region with 760 

enhanced diurnal warming is also shown in Figure 10. 761 

 762 

Figure 8.  Evaluation of the ability of the second moments of the interpolating functions to 763 

replicate the variance of the underlying observations on the selected grids of differing resolution.  764 

The top panels correspond to the MODIS resolution sampling on the SEVIRI grid, the middle 765 
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panels to MODIS resolution sampling on the AMSR-E grid, and the bottom panels to SEVIRI 766 

resolution sampling on the AMSR-E grid.  Panels a-c show the variance computed from the 767 

second moment of the interpolating functions over the grid cell, panels d-f show the variance of 768 

the available observations within the grid cell, and panels g-i show the corresponding differences 769 

between the functional and direct data approaches.  Common color bars are shown at the bottom 770 

of each column. 771 

 772 

Figure 9.  Distribution of the variance estimates computed from the (solid lines) second moments 773 

of the interpolating functions and the (dotted lines) sample variance of the available observations 774 

for the results from the entire domain plotted in Figure 8.  Results for the different sensor and 775 

grid combinations are plotted by color as shown in the legend. 776 
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 777 

Figure 10.  As in Figure 8, but for the localized region including the peak diurnal warming. 778 

 779 

The dominant feature of the functional and observational variance differences is their 780 

difference in magnitude.  The variances derived from the interpolating functions are smaller in 781 

magnitude than the sample variances of the observations over the same domains, but they reflect 782 
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similar regional patterns.  No strong coherent spatial patterns are exhibited in the difference 783 

images in either Figure 8 g-i or Figure 10 g-i.     784 

Given the differences in magnitude between the variance estimates, it is important to 785 

consider how representative the values are of the actual physical variability we wish to quantify.  786 

An observational measure of spatial variability is dependent on the density of the underlying 787 

sampling.  Gaps in the observations can miss sources of variability.  When observations are more 788 

abundant, it is possible to get an increasingly better representation of the variability.  Use of the 789 

interpolating function allows estimation in the limit of complete sampling at the given resolution, 790 

since they are continuous everywhere in the spatial domain for which they apply.  This assumes, 791 

of course, that the density of observations was at least sufficient to derive an accurate 792 

interpolating function.  Observational variability estimates are also critically dependent on the 793 

noise level of the measurements.  The presence of artifacts in the satellite retrievals noted in 794 

Section 5 implies that the data might not be completely reliable for direct estimation of the 795 

spatial variability.  The interpolating function, in contrast, can largely mitigate the impact of 796 

sensor noise and other artifacts.  Because of the filtering of noise and some inherent smoothing 797 

of the observations in the fitting process, the variability derived from the interpolating function is 798 

expected to be lower in magnitude.  Under conditions where the density of observations is 799 

reduced (but not too low) and/or where the observations have elevated noise, the interpolating 800 

function could provide an improved estimate of the true subpixel variability.  At minimum, the 801 

interpolating function should provide a lower physical bound on the spatial variability at the 802 

scale of the underlying observations.  803 

Based on this reasoning and the similar patterns in the derived variability, the variance 804 

derived from integration of the second moment of the interpolating functions appears to provide 805 
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a powerful mechanism to help estimate the magnitude of, and regional differences in, the 806 

variability within the selected satellite footprints.  Comparison of the quantitative variance 807 

estimates with grid resolution first provides insight into how the magnitude of the underlying 808 

physical variability changes with spatial scale.  Comparing variance estimates from the MODIS 809 

interpolating function on the AMSR and SEVIRI grids shows increased variance over the larger 810 

25-km AMSR cells (mean of 0.03 K2 vs 0.005 K2 for the full region).  This is to be expected as 811 

larger regions generally encompass increased spatial variability.  The variance computed from 812 

the SEVIRI interpolating function on the same AMSR grid (mean of 0.01 K2) is less than that 813 

from the MODIS interpolating function.  This again makes sense as the higher resolution 814 

MODIS observations resolve more small-scale variability than does SEVIRI, though perhaps 815 

with increased noise.  Lower limits on the derived variance, however, approach similar values in 816 

open ocean regions.  The mode of the variance of the MODIS interpolating function evaluated on 817 

25-km regions is 0.005 K2 (Figure 9) in agreement with the mean variance value evaluated over 818 

5-km regions.  This value corresponds to a standard deviation of 0.07 K, which is in excellent 819 

agreement with the spatial variability contribution to satellite SST retrieval accuracy found by 820 

Castro et al. (2010).  The smallest variance estimates from the direct retrievals also approach 821 

similar limits but show more variability across the satellite scans. 822 

The variance estimates further permit closer examination of regional variations in the 823 

spatial variability.  For MODIS-scale 1-km observations aggregated on a 5-km resolution grid, 824 

the explicit variance is very homogenous over the entire domain, with a barely noticeable 825 

increase in the immediate vicinity of the peak diurnal warming (Figure 10a).  The spatial 826 

variability throughout is well captured by the mean variance value of 0.005 K2.  On scales of 25 827 

km, however, localized areas with increased variance up to 0.2 K2 are visible, particularly near 828 
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the diurnal warming.  The peak values directly near the diurnal warming maximum obtained 829 

from the direct retrievals are quite similar to those from the interpolating function, further 830 

supporting this upper value.  These results suggest that spatial representativeness errors on scales 831 

of 5 km can be reasonably assumed to be around 0.07 K over large expanses of the ocean, but 832 

that on scales of 25 km, localized variations should be considered and the errors can increase to 833 

near 0.4 K in regions with enhanced spatial variability.  Overall, these results obtained using the 834 

new interpolating functions are broadly consistent with other localized estimates of spatial 835 

variability, but further enable a practical way to help quantify spatial variability and 836 

representativeness errors over much larger regions and at different scales.   837 

 838 

7. Conclusions and Future Directions 839 

A new powerful global interpolation technique yielding an interpolant in functional form 840 

has been developed with multiple potential applications to the generation and analysis of 841 

satellite-derived SST products.  While directly relevant to the traditional application of gap 842 

filling for construction of blended gap-filled analyses, the technique has additional novel 843 

applications to the quality assessment of satellite SST retrievals and quantitative estimation of 844 

spatial variability on different scales.  Use in addressing these problems could provide important 845 

guidance not readily available through other currently available methods. 846 

The technique is based on the construction of a trigonometric interpolating function that 847 

fits the input satellite retrievals within a limited spatial wavenumber domain, providing adequate 848 

resolution in regions of larger data gaps and the highest possible resolution in regions with 849 

sufficient data density.  This resulting interpolant provides a functional representation of the 850 

underlying physical SST field that can be evaluated anywhere within the domain over which it 851 
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was derived.  Importantly, moments of the interpolating function can be calculated accurately 852 

and efficiently, enabling estimation of the mean and variance of the field over desired sub-853 

regions.  In this application, our choice of functional form was trigonometric polynomials to 854 

assure speed of computation by using the FFT or the USFFT.  Use of the technique was 855 

demonstrated by application to level 2 satellite SST retrievals from the MODIS and AMSR-E 856 

sensors and a level 3 gridded SEVIRI product as well as a spatially complete composite SST 857 

product sampled with a realistic cloud mask. 858 

The results illustrated how comparison of the functional form of the interpolant with the 859 

original retrievals upon which it was based could be employed as part of an operational 860 

processing scheme to help flag suspect retrievals for additional quality assessment.  Large values 861 

of misfit highlight specific retrievals potentially inconsistent with smooth variations of the 862 

surrounding values.  The technique was able to illustrate very small anomalies/artifacts such as 863 

MODIS sensor striping largely undetectable with other approaches. 864 

The choice of the functional form strongly affects what patterns can be identified.  The 865 

trigonometric polynomials employed in this application identified potential artifacts associated 866 

with linear scan striping but fit and reproduced small conical stripes associated with the scanning 867 

of AMSR-E.  Alternate functional forms could be used to target other specific anomalies like 868 

conical striping.  In general, there are many known ways in which additional constraints can be 869 

imposed to help filter out artifacts with specific characteristics and we plan to develop 870 

appropriate interpolants for such purpose.  The overall framework is extremely versatile and 871 

powerful.  872 

Direct comparisons between moments of the generated interpolating functions and the 873 

observations used in their derivation showed that the technique can be used to accurately 874 
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represent spatial averages and quantify spatial variability in the underlying physical SST field.  875 

Integrals of the interpolating functions for MODIS, SEVIRI, and AMSR-E agreed closely with 876 

direct averages of the available retrievals over the same domains.  This illustrates how the 877 

interpolating functions can be used to emulate retrieval of the SST field at different effective 878 

spatial resolutions.  Moreover, the second moment of the interpolating functions was consistent 879 

with the variability of the available observations within grids of coarser resolution demonstrating 880 

that the functions can help provide quantitative estimates of, or bounds on, the spatial variability 881 

on different desired spatial scales.  The spatial variance estimated from the interpolating 882 

functions was generally smaller than that of the direct observations due to observational noise 883 

and the smoothing nature of the functions, but the values represent a lower bound on the physical 884 

variability and could, in at least some cases, be more consistent with the actual variability on the 885 

scale of the sampling given the observational limitations.  Comparison of the interpolated results 886 

with independent buoy SST measurements from the day assessed further supported the ability of 887 

the technique to accurately reproduce the underlying SST field.  Broader tests over larger regions 888 

and additional days are, of course, desirable. 889 

Quantitative estimation of the spatial variability of the SST on different scales and the 890 

associated representation error of point and finer scale measurements is particularly challenging 891 

with other traditional methods and much remains unknown about appropriate physical values.  892 

Application of the technique provided new insight into the spatial SST variability, at least within 893 

the limited region of this initial test.  Within open ocean regions away from any frontal features, 894 

variability of 1-km-resolution observations on grids of both 5- and 25-km resolution was found 895 

to be ~0.07 K (as expressed by a standard deviation).  In regions of sharper gradients such as 896 

associated with strong localized diurnal warming, the variability within 25-km-resolution grids 897 
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increased to as much as 0.4 K for sampling at 1-km resolution.  The variability of 1-km 898 

observations on a 25-km-resolution grid was about 2.4 times greater than that on a 5-km-899 

resolution grid.  Broader application of the technique globally could help better quantify true 900 

regional variations in the spatial variability, which would subsequently improve uncertainty 901 

estimates for existing satellite-based SST products. 902 

The relative performance of the interpolation technique in the traditional gap-filling 903 

problem as compared with other traditional methodologies was not explicitly examined in this 904 

paper.  Detailed comparisons are required to accomplish this in a meaningful way.  Additional 905 

activities related to this topic are planned and the utility of the technique for gap-filling in 906 

construction of level 4 SST analyses will be explored.   907 

While applied here primarily to single-sensor data, the technique can also be applied with 908 

inputs from multiple sensors and observations collected across different measurement times to 909 

handle larger data gaps as previewed in Section 4.  Successful application of the interpolation 910 

methodology is clearly dependent upon having sufficient observational data density and quality 911 

to accurately derive and constrain the interpolating functions.  As expected, the quality of the 912 

interpolating functions is only as good as the data from which they are derived.  The positive 913 

outcome of this investigation was, in part, enabled by the low amount of cloud cover in the 914 

scenes analyzed.  Application of the technique, based solely on single-sensor data, will be 915 

challenging in regions of extensive and persistent cloudiness where the infrared coverage can be 916 

limited.  Additionally, the finest effective spatial resolution of the interpolating functions is 917 

naturally limited by the resolution of the data used in their derivation.  Preliminary tests indicate 918 

that the technique can be easily expanded to blend multi-sensor data to help ameliorate any 919 

limitations associated with data density, which will further enhance the powerful new capability.   920 
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Figure Captions 1006 

 1007 

Figure 1.  Illustration of (a-c) the input data to the interpolating function, (d-f) the resulting 1008 

interpolant evaluated everywhere in the domain, and (g-f) the corresponding misfit for (top) 1009 

MODIS, (middle) SEVIRI, and (bottom) AMSR-E.  The input data shown has outliers already 1010 

removed as described in Section 5.  Panels a-f all share a common color bar shown at the bottom 1011 

of the figure.  Panels g-i have distinct color bars shown just to their right. 1012 

 1013 

Figure 2.  Initial demonstration of the interpolation technique applied to a SST composite 1014 

derived from SEVIRI.  Panel (a) shows the original composite, (b) shows the composite with the 1015 

cloud mask applied, and (c) shows the interpolating function evaluated everywhere on the 1016 

composite grid.  The resulting misfit is shown in panels d-e for both the clear values and all 1017 

values respectively.  The corresponding “blended” misfit in panel e was derived in an additional 1018 

experiment where additional inputs to the interpolation in cloud screened regions were supplied 1019 

based on simulated lower resolution data.  See text for details. 1020 

 1021 

Figure 3.  Mean misfit evaluated as a function of Euclidean distance to the nearest available 1022 

observation for the identified interpolation techniques.  The black trace reflects the results 1023 

obtained from our interpolating function derived from inputs in clear areas only.  The red trace 1024 

was obtained from an alternative interpolating function obtained with additional simulated lower 1025 

resolution SST input in the cloudy regions.  The green trace applies to an independent simple 1026 

distance-weighted interpolation approach.  Solutions for this weighted technique exist only up to 1027 

a distance of about 30 pixels. 1028 
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Figure 4.  Locations of the largest misfit values for (a) MODIS, (b) SEVIRI, and (c) AMSR-E.  1029 

The locations exceeding the percentile indicated in the title of each panel are plotted in black 1030 

while all other observation locations are plotted in gray. 1031 

 1032 

Figure 5.  Evaluation of whether the integral of the interpolating functions is a direct analog to 1033 

the average of the underlying observations on the selected grids of differing resolution.  The top 1034 

panels correspond to the evaluation of MODIS resolution sampling on the SEVIRI grid, the 1035 

middle panels to MODIS resolution sampling on the AMSR-E grid, and the bottom panels to 1036 

SEVIRI resolution sampling on the AMSR-E grid.  Panels a-c show the integrals of the 1037 

interpolating functions over the grid cell, panels d-f show the average of the available 1038 

observations within the grid cell, and panels g-i show the corresponding differences between the 1039 

integrals and averages.  Common color bars are shown at the bottom of each column. 1040 

 1041 

Figure 6.  As in Figure 5, but for a localized region including the peak diurnal warming. 1042 

 1043 

Figure 7.  Distribution of the differences between the integrals of the interpolating functions and 1044 

averages of available observations for the results from the localized region plotted in Figure 6.  1045 

Results for the different sensor and grid combinations are plotted by color as shown in the 1046 

legend. 1047 

 1048 

Figure 8.  Evaluation of the ability of the second moments of the interpolating functions to 1049 

replicate the variance of the underlying observations on the selected grids of differing resolution.  1050 

The top panels correspond to the MODIS resolution sampling on the SEVIRI grid, the middle 1051 
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panels to MODIS resolution sampling on the AMSR-E grid, and the bottom panels to SEVIRI 1052 

resolution sampling on the AMSR-E grid.  Panels a-c show the variance computed from the 1053 

second moment of the interpolating functions over the grid cell, panels d-f show the variance of 1054 

the available observations within the grid cell, and panels g-i show the corresponding differences 1055 

between the functional and direct data approaches.  Common color bars are shown at the bottom 1056 

of each column. 1057 

 1058 

Figure 9.  Distribution of the variance estimates computed from the (solid lines) second moments 1059 

of the interpolating functions and the (dotted lines) sample variance of the available observations 1060 

for the results from the entire domain plotted in Figure 8.  Results for the different sensor and 1061 

grid combinations are plotted by color as shown in the legend. 1062 

 1063 

Figure 10.  As in Figure 8, but for the localized region including the peak diurnal warming. 1064 

 1065 




